函数概念的提出与发展演变
函数在当今社会应用广泛,在数学,计算机科学,金融,IT等领域发挥着举足轻重的作用;在数学发展的历史上,函数这一概念从提出到如今渗透到数学的各个层面,都在数学学科中有着不可撼动的地位。学好函数、了解函数的发展历史不仅能提高我们对函数概念的认知度,还能有助于我们更好的运用函数解决实际问题。
1 函数产生的社会背景
函数 (function) 这一名称出自清朝数学家李善兰的着作《代数学》,书中所写“凡此变数中函彼变数者,则此为彼之函数”.而在 16、17 世纪的欧洲,漫长的中世纪已经结束,文艺复兴给人们的思想带来了觉醒,新兴的资本主义工业的繁荣和日益普遍的工业生产,促使技术科学和数学急速发展,这一时期的许多重大事件向数学提出了新的课题;哥白尼提出地动说,促使人们思考:行星运动的轨迹是什么、原理是什么。牛顿通过落下的苹果发现万有引力,又自然使人想到在地球表面抛射物体的轨迹遵循什么原理等等。函数就是在这样的一个思维爆炸的时代下渐渐被数学家们所认知和提出。
早在函数概念尚未明确之前,数学家已经接触过不少函数,并对他们进行了分析研究。如牛顿在 1669 年的《分析书》中给出了正弦和余弦函数的无穷级数表示;纳皮尔在 1619 年阐明的对数原理为后世对数函数的发展提供有力依据。1637年法国数学家笛卡尔创立直角坐标系,使得解析几何得以创力,为函数的提出和表述提供了更加直观的方式;直角坐标系可以很形象的表述两个变量之间 的变化关系,但他还未意识到需要提炼一般的函数概念来阐述变量的关系。17 世纪牛顿莱布尼兹提出微积分的概念,使得函数一般理论日趋完善,函数的一般概念表述呼之欲出。在 1673 年莱布尼兹首次使用函数一词来表示“幂”,而牛顿在微积分的研究中也使用了“流量”一词来表示变量之间的关系。函数就是在数学家们不同分支但相同意义的研究下顺应而生。
2 函数概念的提出和初步发展
1718 年,瑞士的数学家约翰·伯努利(Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量”.伯努利把变量 x 和常量按任何公式构成的量叫做 x 的函数,表示为 yx.值得一提的是伯努利家族是一个科学世家,3 代人中产生了 8 位科学家,后裔中有不少人被人们追溯过,这是非常罕见的。约翰·伯努利的函数定义在为后世的函数发展提供了便利。
1755 年,瑞士数学家欧拉(Leonhard Euler)把函数定义为“如果某些变量,以某一些方式依赖于另一些变量;即当后面这些变量变化时,前面这些变量也随之变化,就把前面的这些变量称为后面这些变量的函数”.欧拉的定义与现代函数的定义很接近。在函数的表达上,欧拉不拘于用数学式子来表示函数,破除了伯努利必须用公式表达函数的局限性,他认为函数不一定要用公式来表示,他曾把画在坐标系上的曲线也叫做函数,他认为函数是“函数是随意画出的一条曲线”
3 十九世纪的函数-对应关系
19 世纪是数学史上创造精神和严格精神高度发扬的时代,几何,代数,分析等各种分支犹如雨后春笋般竟相发展;函数进入 19 世纪后,概念理论得到了极大的拓展和完善。
1822 年傅立叶发现某些函数可以表示成三角级数,进而提出任何函数都可以展开为三角级数;提出着名的傅立叶级数。使得函数的概念得以改进,把世人对函数的认识推到了一个新的层次。
1823 年,法国数学家柯西从定义变量开始给出了函数的定义,指出无穷级数虽然是定义函数的一种有效方法,但定义函数不是一定要有解析表达式,他提出了“自变量”的概念;他给出的定义是“在某些变数间存在一定的关系,当一经给定其中某一变量的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”这一定义与现在中学课本中的函数定义基本相同。
1837 年,德国数学家狄利克雷指出:对于在某区间上的每一个确定的值,都有一个或多个确定的值,那么 y 就叫做 x的函数。狄利克雷的函数定义避免了以往以往函数定义中依赖关系来定义的弊端,简明精确,为大多数数学家所接受。
4 现代函数-集合论的函数
自从德国数学家康托尔提出的集合论被世人广泛接受后,用集合的对应关系来表示函数概念渐渐占据了数学家们的思维。通过集合的概念把函数的对应关系、定义域以及值域进一步具体化。1914 年豪斯道夫在《集合论纲要》中用“序偶”来定义函数;库拉托夫斯基在 1921 年又用集合论定义了“序偶”.这样就使得豪斯道夫的定义更加严谨。
1930 年,新的现代函数定义为:若对集合 M 的任意元素X 总有集合 N 确定的元素 Y 与之对应,则称在集合 M 上定义一个函数,记为 Y=f(x)。元素 x 称为自变量,元素 Y 称为因变量。
5 函数发展对当代社会的意义
函数的发展,对当代社会的生产生活产生了重大的影响;函数概念也随着时代的不断进步而分成了网状的分支,从简单的一次函数到后来复杂的五次函数方程的求解;从简单的反函数,三角函数到后来的复变函数,实变函数。这些函数的常用性质,以及函数的求解都随着人们对函数概念理论的不断深入而发现,进而无数人对其更加深入了研究探讨,函数思想理论也深入渗透到社会各个领域。从教师教学中的函数思想到解决实际问题的数学建模;从计算机编程领域的 C 函数到调控市场经济的概率理论研究,函数无时无刻不在发挥其强大的作用。了解函数概念发展的过程,就是不断挖掘理解函数内涵的过程,可以使人们对这个客观的世界更加深入的了解,有助于人们丰富视野,并不断的加以发展,适应不断变化的社会需要。
参 考 文 献
[1]陈路飞。函数发展史[J].数学爱好者,2006(,2)。
[2]庞懿智。函数的发展史对函数的教学的启示[J].未来英才,2014,(7)。
[3][美]Victor J.Katz. 数学史通论第二版[M].高等教育出版社,2004.02.
[4]彭林,童纪元。借助函数概念的发展史引入函数概念[J].中学数学,2011,(11)。