快捷搜索:论文 合同 演讲 心得

北师大版六年级数学下册期末试卷_北师大版六年级下册数学全册的教案设计【优秀8篇】

北师大版六年级下册数学优秀教案 篇一

[教学目标]:

1、结合具体情境,体会生活中存在着大量互相依赖的变量。

2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。

[教材分析]:

教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。

教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。

[学校及学生状况分析]:

我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。

[教学过程]:

一、创设情境,导入新课。

1、用手势表示出自己从出生到现在身高的变化。

2、用手势表示出自己从出生到现在体重的变化。

3、师:身高、体重都会变化,这些都是变化的量。(板书课题)

二、观察表格,感知变量。

1、出示小明的体重变化情况表。

师:这是小明的体重变化情况表。

(1)从表中你知道了什么信息?

(2)上表中哪些量在发生变化?

(3)师生共同画一画小明的体重变化情况折线统计图。

(4)说一说小明10周岁前的体重是如何随年龄增长而变化的。

2、说一说。

(1)我发现( )随( )的增加而增加。

(2)我发现( )随( )的减少而减少。

3、师:通过你们举的例子,可以发现什么?

三、通过读图,感受变量。

1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

2、出示骆驼体温随时间的变化统计图。

3、读懂统计图。

(1)从图中你知道了什么信息?

(2)一天中,骆驼体温是多少?最低是多少?

4、感受量的周期变化。

(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?

(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?

(4)师:每天骆驼的体温总是怎样变化的?

四、建立模型,感悟变量。

1、出示叫的蟋蟀叫的次数与气温之间关系的情境。

2、你能用式子表示这个近似关系吗?

即气温h=t÷7+3。

3、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?

如果蟋蟀叫了14次,这时的气温大约是多少?

如果蟋蟀叫了28次呢?

你能发现蟋蟀叫的次数与气温之间是怎样变化的?

4、举出而变化的例子。

5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

五、课堂巩固,加深理解。

1、连一连,把相互变化的量连起来。

路程 正方形周长

边长 购卖数量

总价 行驶时间

2、说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

六、全课小结,谈谈收获。

北师大六年级数学下册教案 篇二

教学过程:

一、引入变量的概念

师:老师买了10个苹果,吃了2个,还剩?个吃了4个,还剩?个吃了7个,还剩?个

问:在老师刚才叙述的吃苹果这件事中有几个量?其中哪些量是变化的?怎样变化?

(有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)

师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。

二、新授

师:好,下面我们一起看书P18。

1. 看第一个例子,说说这个统计表的内容是什么?

(是小明体重变化的情况)

年龄出生时6个月1周岁2周岁6周岁10周岁体重/千克3.57.010.514.021.031.5

问:表中的哪些量在发生变化?

年龄在变,体重也在发生变化:年龄增加,体重也在增加。

问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)

2. 看第二个例子。骆驼被称为沙漠之舟,这就是反映骆驼体温随时间的变化而变化的图象。请你认真观察图象,图象中反映了哪些变量之间的关系?

(时间、体温)

指导学生读懂图意:

(1) 一天中,骆驼体温最高是多少?(400C)最低是多少?(350C)

(2) 一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)

师:骆驼的体温是随时间而呈周期性的变化。

(3) 第二天8时骆驼的体温与前一天8时的体温有什么关系?

师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。

3. 看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。

问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?

h=t7+3

三、引导学生举出生活中一个量随另一个量变化的例子。

如:一天的气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。

问:你能举出生活中一个量随另一个量变化的例子吗?

(学生举例,只要合理,老师就要给予肯定。)

四、课堂小结。

同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。

北师大六年级数学下册教案 篇三

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:

认识反比例关系的意义。

教学难点:

掌握成反比例量的变化规律及其特征。

教学过程:

一、铺垫孕伏:

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、自主探究:

1.教学例1。

出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

每天运的数量(吨) 10 20 30 40 50

所需的天数 30 15 10 7.5

在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答 讨论结果得出:

(1)每天运的吨数和需要的`天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例2

出示例2

请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

3.概括反比例的意义。

(1)综合例1、例2的共同点。

提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

4.具体认识。

(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例2里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3) 判断。

现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。

北师大版小学六年级下册数学教案 篇四

教学目标

1、使学生巩固线段、射线和直线的概念,使学生巩固角的概念,进一步认识角的分类及各类角的特征,使学生进一步掌握垂线和平行线的概念。

2、使学生进一步认识学过的四边形的特征及其相互之间的联系,能正确地画出长方形和正方形。进一步认识圆的特征,能正确地画圃;巩固轴对称图形的特征,能判断一个图形是不是轴对称图形,并能找出轴对称图形的对称轴。

3、进一步培养学生的判断能力和空间观念。

教学重点

能够掌握平面图形的基本特征,并且理解相互之间的联系。

教学难点

根据平面的基本特征,能够理解平面图形的相互之间的联系。

教学过程

一、复习线段、射线和直线。

1、复习特征。【演示课件“平面几何图形的认识”】

(1)请你在本上分别画出5条不同的线,然后同桌互相说说你画的是什么线,有什么特点?他们之间又有什么不同?

(2)全班汇报。

指出:线段、射线和直线都是直的,线段是直线的一部分;线段有两个端点,是有限长的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

2、判断反馈。

(1)一条射线长5厘米。()

(2)通过一点可以画无数条直线。()

(3)通过两点可以画一条直线。()

(4)通过一点可以画一条射线。()

二、复习角。【继续演示课件“平面几何图形的认识”】

1、什么叫做角?请你自己画一个任意角。

提问:根据你画的角说—说,怎样的图形是角?(板书:角)

2、复习各部分名称。

学生填写各部分名称。

教师提问:(1)角的大小与什么有关?

(角的大小与两边叉开的大小有关,与边画的长短无关)

(2)角的大小的计量单位是什么?

3、复习角的分类。

教师说明:根据角的度数,可以把角分类。

教师提问:我们学习过哪几类角?每种角的特征是什么吗?

(板书:锐角直角钝角平角)

三、复习垂线和平行线。【继续演示课件“平面几何图形的认识”】

1、教师提问:在什么情况下可以说两条直线互相垂直?

你能举出日常生活里的例子吗?

在什么情况下可以说两条直线平行?

谁来举出平行线的例子?

2、画图。

让学生在练习本上画一组垂线和一组平行线。

四、复习了平面图形。

(一)复习三角形的概念。【继续演示课件“平面几何图形的认识”】

1、提问:什么叫做三角形?你能够画出几种不同的三角形?

老师板书分类:a.按照边分类;b.按照角分类

2、教师口述,学生作图。

(1)等腰三角形

(2)等腰直角三角形

3、判断。

出示一组三角形,让学生说说各是什么三角形。

4、复习三角形的内角和。

提问:三角形的三个内角的和是多少度?我们是怎样发现的?

(二)复习四边形。【继续演示课件“平面几何图形的认识”】

教师提问:四边形是怎样的图形?我们曾经学习过哪些四边形?

1、复习图形特征。

出示:

请你说说图里学过的四边形的名称、特征和字母表示的意义。

小组共同回忆:

(1)长方形有什么特征?

(2)正方形有什么特征?

(3)平行四边形有什么特征?

(4)梯形有什么特征?

2、从图上看,我们学过的四边形可以分为哪几类?正方形,长方形和平行四边形之间有什么关系?为什么?

教师小结:由于长方形、正方形两组对边都分别平行,所以长方形、正方形都是特殊的平行四边形,而正方形又是特殊的长方形。

板书:(完善四边形的关系)

(三)复习圆。【继续演示课件“平面几何图形的认识”】

1、复习圆的特征。

(1)画圆,并用字母表示圆心、半径和直径。

(2)提问:圆是怎样的一个图形?

同一个圆中直径和半径有什么关系?

2、复习轴对称图形。

(1)请同学们把圆对折。

提问:你发现圆对折后有什么特点?

再把等腰三角形、等边三角形对折,使折痕两边完全重合。

(2)提问:你认为刚才对折的图形都有什么特点,是什么图形?

(板书:轴对称图形)

这里对折的折痕就是什么?

(板书:对称轴)

怎样的图形是轴对称图形,什么叫对称轴?

等边三角形有几条对称轴?圆有多少条对称轴?

我们学过的其他图形里,哪些是轴对称图形?

你还能说出哪些见过的轴对称图形?

五、综合练习。

1、判断。

(1)小于180度的角叫做钝角。()

(2)平角是一条直线。()

(3)两条直线相交组成的四个角中,如果有一个角是直角,那么其他的三个角也是直角。()

(4)不相交的两条线叫做平行线。()

(5)等边三角形一定是等腰三角形。()

(6)任何两个等底等高的梯形都能够拼成一个平行四边形。()

2、选择题。

(1)直角的两条边是()

①直线②射线③线段

(2)等边三角形是()

①锐角三角形②直角三角形③钝角三角形

3、下面这个图中有多少个长方形?多少个三角形?多少个梯形?

六、小结。

通过这堂课的学习,你能够说出哪些包含关系的图形?

北师大六年级数学下册教案 篇五

一、学习内容:

教师提供 小学数学六年级下册14页----17页。

二、学生提供:

等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

三、学习目标:

1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

四、重点难点:

重点:圆锥的体积计算。

难点圆锥的体积公式推导。

关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

五、学习准备:

等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?

长方形的长等于三角形的底,长方形的宽等于三角形的高。

你的发现真了不起。这种情况在数学中叫做“等底等高”。在“等底等高”的条件时,它们的面积又有什么样的关系呢?

三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

六、布置课前预习

点拨自学

1、圆柱和圆锥有哪些相同的地方?

2、圆柱和圆锥有哪些不同的地方?

3、圆锥的体积和圆柱的体积有什么关系呢?

请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟! 按照预习中学生存在的问题,教师加以点拨。

七、交流解惑:

它们的底面积相等,高也相等

圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……

动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。 组内交流

组际解疑

老师点拨

八、合作考试

1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)

2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底

面半径约3分米,高约2.7分米,求沙堆的体积。

(只列式不计算)

3、在打谷场上,有一个近似于圆锥的小麦堆,测

底面直径是4米,高是1.2米。每立方米小麦约

重735千克,这堆小麦大约有多少千克?

(只列式不计算)

4、如图,求这枝大笔的体积。

(单位:厘米)

(只列式不计算)

5、将一个底面半径是2分米,高是4分米的圆柱

形木块,削成一个最大的圆锥,那么削去的体积

是多少立方分米?(口算)

九、自我总结:

通过今天的学习,我学会了 ,以后我会 在 方面更加努力的。

十、教学反思:

本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。

北师大六年级数学下册教案 篇六

教学内容:

北师大版数学六年级下册2-4页。

教学目标:

1、 通过观察面的旋转的特点,理解圆柱和圆锥的形成与面的旋转之间的关系。

2、 联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。

3、 通过观察,初步了解圆柱和圆锥的组成及其特点。

教学重点:

联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。

教学难点:

通过观察,初步了解圆柱和圆锥的组成及其特点。

教学过程:

活动一:初步认识圆柱和圆锥。

1、 将自行车后轮支架支起,在后轮辐条上系上彩带。转动后轮,观察并思考彩带随车轮转动形成的图形是什么?

请学生想象后回答自己的想法。

2、 观察下图,你发现了什么?

延伸的铁路,雨刮器刮过的车窗,旋转门。

3、 用纸片和小棒做成小旗,快速旋转小棒,观察并想象纸片旋转后所形成的图形,再连一连。

4、 介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。

小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。

5、 找一找:请你找出我们学过的立体图形。

活动二:进一步认识圆柱和圆锥。

1、 圆柱与圆锥分别有什么特点?

2、 认识圆柱和圆锥各部分的名称。

圆柱的上下两个面叫做底面,它们是完全相同的两个圆。

圆柱有一个曲面,叫做侧面。

圆柱两个底面之间的距离叫做高。

圆锥的底面是一个圆。

圆锥的侧面是一个曲面。

从圆锥顶点到底面圆心的距离是圆锥的高。

教师画出平面图进行讲解。并在图上标出各部分的名称。

3、 找一找下面的物体中,哪些部分的形状是圆柱或圆锥?

4、 找一找还有哪些物体的形状是圆柱或圆锥?

5、 下面图形是圆柱或圆锥的在括号里写出图形的名称,并标出底面直径和高。

6、 想一想,转动后会形成怎样的图形?

7、 看图算出箱子的长、宽和高。

北师大六年级数学下册教案 篇七

教学内容:

教材第4~5页例2、例3和练一练及练习一。

教学要求:

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教具学具准备:

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

教学重点:

掌握圆柱侧面积的计算方法。

教学难点:

能根据实际情况正确地进行计算。

教学过程:

一、铺垫孕伏:

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

二、自主研究:

1.认识表面积计算方法。

(1) 请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

5.组织练习。

(1)第七页第四题

(2)先小组合作讨论,再书面练习,然后集体订正。

北师大六年级数学下册教案 篇八

教学目标

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

教学重点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程

一、复习

1.什么是正比例的量?

2.判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

1.情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

2.情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定。

3.情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

写出关系式:每杯果汁量杯数=果汗总量(一定)

以上两个情境中有什么共同点?

4.反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

您可能还会对下面的文章感兴趣: