《解决问题的策略—假设》六年级数学教学反思优秀5篇
在我们平凡的日常里,我们的工作之一就是课堂教学,反思是思考过去的事情,从中总结经验教训。那要怎么写好反思呢?以下是人见人爱的小编分享的5篇《解决问题的策略—假设》六年级数学教学反思,希望能够给您提供一些帮助。
篇一:《解决问题的策略—假设》六年级数学教学反思 篇一
12月11日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜可能是10只怎样的船。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行, 培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
课后经过汪主任的评点,使我对教材有了更深层次的领悟。特别是对假设这个策略,最后提炼出经典的4个词假设比较调整检验4个步骤,这是我课上没有概括出来的。虽然我是按照这几步来做的。但没有概括出来,学生仅仅停留在解决问题上。学生还处于模仿状态。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个学来勉励自己:教学也;始于自学学也;终于教人,学也。
篇二:《解决问题的策略—假设》六年级数学教学反思 篇二
这一课是新教材中的比较有难度的一节课,以前策略的叫法是替换,现如今改成了假设,虽然叫法不同,但是课的本质是一样的,要求学生能够学会假设这一策略将两种未知量转化成一种未知量,使得原本比较复杂的问题变得简单一些。
选择这一节课也算是一种挑战,可以说,在课前准备的时候,觉得如果按照教案中的流程来应该来说还是比较清晰和流畅的。可是,预想的总归是和实际有一定得差距。接下来,就第一次磨课的感受来谈一谈。
首先,在新课教授前,有一个预习反馈,这一个反馈最主要的就是要让学生初步感受转化的数学思想,因为转化是本节课中的一个重要思路,假设就是以这一思想为基础的。同时,也让学生认识到,在以前的`学习中,我们大多碰到的问题是解决一种未知量的题目。可是,在这一环节结束后,没有对其进行一个小结过度,这就使得预习反馈的内容与新课没有联系起来。
其次,新授过程比较凌乱。原因很大程度上我被学生的思维牵着走了,并且回不到我之前预想的方案中。然后感觉是越来越乱,自己也没有在一些小的问题上处理好,使得有时候自己的思路出现了混乱。课堂中对老师的考验还是很大的,对学生要会及时引导,对学生课堂中生成的问题及时利用和处理等等。
篇三:六年级数学《解决问题的策略》的教案 篇三
教学目标:
1、使学生初步认识并理解替换的策略,学会根据题中两个数量之间的倍数关系或相差关系,用替换的思想解决实际问题。
2、使学生在解决实际问题过程不断反思中,感受替换策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:掌握用替换的策略解决问题的方法。
教学难点:感受替换策略对于解决特定问题的价值。
教学过程:
一、创设情境,初步感知替换策略。
1.动画引入,学生续讲《曹冲称象》的故事。从曹冲是用与大象同样重量的石头换大象,引出替换的话题。
2.举出现实生活中替换的例子。通过为小明调换商品初步感知替换策略。
3.揭示课题,引入例1。
二、合作交流,探索学习替换策略。
出示例题1的情境:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?
(一)分析题意,弄清条件与问题。
1.你是怎样理解小杯的容量是大杯的1/3这句话的?
2.引发思考,激起尝试的欲望。启发提示:这里6个小杯和1个大杯的果汁才是720毫升,要求小杯和大杯的容量两个问题,能直接求吗?能否将大杯容量与小杯容量两个量与总量720毫升的关系转化成其中一个量与总量的关系呢?
(二)组织学生合作交流,先议一议怎样用替换的策略解决问题?再尝试列式计算。
(三)汇报尝试情况,归纳用替换的策略解决问题的方法。指名学生汇报自己的想法,板演出算式,并讲一讲每步式子的意义。
借助媒体演示总结:
1.大杯换成小杯或小杯换成大杯的依据是什么?
2.把大杯换成小杯:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?也就是说9个小杯容量是720毫升,那就可以先求出每个小杯的容量。
3.把小杯换成大杯:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?720毫升果汁可以倒3个大杯。可以先求出每个大杯的容量。
(四)检验。师引导:验证求出的结果是否正确,想一想可以怎么检验?
①把6个小杯的容量和1个大杯的容量加起来,看它是否等于720毫升;
②还要检验大杯的容量是不是小杯容量的3倍。(板书检验过程)
总之,检验时要看所求出来的结果是否符合题目中的两个已知条件。
(五)小结:替换的关键就是把两种杯子替换成一种杯子。得出依据倍数关系进行替换,果汁总量不变、杯子的数量变了。
(六)学习依据相差关系进行替换。将例1中大、小杯的倍数关系改为大杯比小杯多20毫升你还会替换吗?
1.议一议,这时还能不能替换?
2.讨论如果将7个杯子全看作小杯(或大杯)果汁的总量还是720毫升吗?是变多了还是变少了?
3.试列式解答。
4.小结与例一不同之处:根据大小杯的相差数进行替换时,总量变了,杯子数没有变。
三、拓展应用,巩固运用替换策略。
1.溜冰场:智力填空(分别用倍数关系和相差关系进行替换)
①○+○+○+△+△=14,△=○+○
○=()△=()
②☆比○多1,☆+○+=10
○=(),☆=()
2.试一试:三种量间倍数关系的替换题(图略)
3.练一练:
①练习十七第1题巩固据倍数关系进行替换。
读题,弄清题意:集体分析,说出不同的替换方案;尝试口头列式解答,并反馈。
②教材例1后练一练巩固据相差关系进行替换。
读题,弄清题意;集体分析,说出不同的替换方案;试列式解答并反馈。
四、总结反思,优化替换策略。
1.今天学习了一种新策略是什么?运用替换这一策略解决实际问题,你觉得需要注意些什么?(学生总结反思)
2.师点一点:替换的策略就是将要求的某一问题用另一个问题替代。用替换策略解答的题目特征及替换时的注意点。
篇四:六年级数学《解决问题的策略》的教案 篇四
一、教学目标分析
解决问题的策略替换的教学目标是让学生在经历解决实际问题的过程中,初步学会用替换策略分析数量关系,在对解决实际问题过程的不断反思中,感受替换策略的价值,进一步发展分析、综合和简单推理能力,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。解决问题不仅是为了获得解决具体问题的方法和答案,更重要的是让学生形成解决问题的基本策略。本课的教学重点是用等量替换的方法使原来复杂的问题转化成较为简单的问题。在落实教学目标时,要注意把握以下几点。
发展学生的策略意识,让学生真切感受到运用策略的必要性。如可先借助学生熟知的曹冲称象故事引入,唤醒学生潜在的与替换有关的经验,然后呈现换杯情境,引导学生感受新问题的复杂性,产生应用替换策略的意识,体验用替换策略解决问题的优越性。
引导学生经历策略形成的完整过程,让学生深刻领会策略内涵。教师要准确定位策略教学的目标,不能满足于让学生掌握替换策略,而应让学生体验策略的形成过程,在经历策略形成过程中获得对策略内涵的认识与理解,让策略的学习过程成为发展策略意识的途径。
处理好认识策略和运用策略的关系。解决问题,特别是解决新颖的问题须要运用策略,解决问题的策略是在解决问题的活动中形成和积累的。尽管认识策略是为了更好地运用策略,运用策略解决问题体现了学习策略的价值,但是教学时没有必要将过多的时间用在引导小学生熟练运用策略解决相关的实际问题上,而应引导学生多元、深刻地认识和理解策略,感受策略给问题解决带来的便利,真正形成爱策略、用策略的意识。
二、教学过程
(一)重温故事,感受替换策略
故事:电脑播放曹;中称象动画。
提问:曹;中是怎样称出大象重量的?
小结:曹冲用石头代替大象,称出了大象的重量。
【曹冲称象的方法是替换策略的具体应用,将曹冲称象的。故事引入课堂,既能为学生的探究指明方向,有助于学生提取替换策略,又能让学生初步感受用策略解决实际问题的好处,自觉地参与到学习中去。】
(二)自主探索,内化替换策略
1.出示问题,补充条件。
电脑动画出示情境:曹操得胜归来,要把珍藏的720毫升美酒分给几个儿子。将这些酒倒入6个小杯和1个大杯,正好都倒满。小杯和大杯的容量各是多少毫升?
(1)学生说自己的想法。(多数学生会发现缺少条件。)
(2)教师引导学生先独立思考应该补充什么条件,再在小组内交流。
(3)小组代表汇报补充的条件,教师根据学生汇报的内容进行整理、分类,重点整理、呈现以下内容:
①大杯的容量是小杯的()倍。
②小杯的容量是大杯的。
③大杯的容量比小杯多()毫升。
④小杯的容量比大杯少()毫升。
【例题直接给出了小杯的容量是大杯的,而此处呈现的情境改编了例题,让学生发现情境中缺少条件并补充条件。这样,学生的关注点将自然地聚焦到大杯和小杯的容量之间的关系上。这样的情境能为学生学习替换策略提供空间和机会,使替换的策略呼之欲出,又非常自然。】
(三)体验策略,解决问题
1.倍数关系。
(1)补充条件:小杯的容量是大杯的。讨论:这个条件给我们提供了哪些信息?根据现有的条件,能解决问题吗?
(2)小组合作解决问题,并把解决问题的思路整理出来,在纸上画一画替换的过程,并算一算大杯、小杯的容积各是多少。
(3)教师请部分学生上台演示解决问题的过程,并说说自己是怎样替换的、替换的依据是什么。
(4)如果在前面的探究过程中,学生只想到了将大杯换成小杯、将小杯换咸大杯两种方法中的一种,教师应引导学生思考有没有;其他替换方法?
【研究数学问题的方式要能顺应学生的思维特点,激发学生主动探索的欲望,给学生自由思考、表达的空间。这样,学生的兴趣才会浓厚起来,思维才会活起来。本环节旨在唤醒学生生活中换的经验,让学生借助画一画、算一算,体验用替换策略解决问题的过程,体会运用替换策略的必要性?和合理性,感受策略的价值,增强策略意识。】
(5)强调检验。教师指出,把6今小杯替换成2个大杯,或者把1个大杯替换咸3个小杯,这样做到底对不对,还须要检验。强调检验时要看结果是否符合题中的两个已知条件。
【本课教学任务较重,检验虽然不是教学重点,但教材把检验安排在写答句的前面,有两层意思:一是先经过检验确认结果再写答句是解决问题的程序,也是学生应养成的良好习惯。二是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学中应该倡导和培养的。考虑到本环节要检验的有两个等量关系,在此多花一点时间和学生共同完成检验是非常必要的。】
(6)对比归纳。教师引导学生讨论把大杯换成小杯和把小杯换成大杯之间有什么共同的地方,并引导学生得出:它们都是先通过替换把两种量变成一种量再解决问题;在替换过程中,要抓住等量关系进行替换;替换是解决问题的一种有效策略。
【接受新知,需要一个反复的过程。本环节反复强化替换策略,让学生通过交流、画图、演示,对比、归纳等数学活动,体验替换策略的妙处,经历用替换策略解决问题的过程,旨在让学生的思维能力得到进一步的发展。】
2.相差关系。
(1)补充条件:每个大杯比小杯多装160毫升。讨论:补充这个条件后,和刚才的问题相比,有什么不同?还能用替换策略解决吗?如果把1个大杯替换成1个小杯,倒【牛牛范文】酒的时候会出现什么情况?
(2)学生交流,教师相机借助多媒体动画演示换杯的过程。
(3)提问:将1个大杯换咸1个小杯,少装多少毫升酒?7个小杯,一共装了多少毫升酒呢?每个小杯可以装多少毫升酒?每个大杯呢?怎样列式?
(4)思考:还有其他替换方法吗?如果把6个小杯替换咸6个大杯,又会出现什么情况?每个大杯比小杯多装多少毫升酒?7个大杯一共能装多少毫升酒?每个大杯、小杯分别能装多少毫升酒?怎样列式?
【组织教学时,教师应正确把握和使用教材,让学生对什么情况下用什么方法替换更合适进行体验,然后借助电脑动画演示替换过程,帮助学生理清思路。】
(5)思考:怎样检验替换后得出的结果是否正确?
(6)小结:无论是将大杯替换成小杯,还是将小杯替换成大杯,都是通过替换把两种量变成一种量;在替换时,要考虑总容量是变多了还是变少了,多了多少或少了多少。
【在两个相差关系的量之间进行替换时,学生比较难理解为什么替换以后总量变化了、总量是怎样变化的。教师通过电脑课件演示替换的过程,能引起学生关注替换后总容量的变化,进而找到解决问题的关键。教学时,还可让学生用实物杯子摆一摆、在纸上画一画具体的替换过程,然后说说为什么可以这样替换。】
(四)学以致用,应用替换策略
1.小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。8块达能饼干的钙含量相当于l杯牛奶的钙含量。每块饼干的钙含量是多少毫克?l杯牛奶呢?你能解决这个问题吗?
2.同样是达能饼干,包装也有不同。2个同样的大袋和5个同样的小袋里一共装有75片达能饼干。每个大袋比小袋多装20片,每个大袋和小袋各装多少片饼干?(学生解答完后,集体讨论(75+205)(2+5)、(75-202)(2+5)分别反映了怎样的替换过程。教师结合学生的回答,用电脑展示替换过程。)
【本环节旨在让学生应用替换策略,进一步体会替换过程中每一步的意义,沟通替换操作与数学表达式之间的联系,建立用替换策略解决某些问题的模型。只有真正经历策略形成的完整过程,并对策略进行深刻的认识与领悟,才有可能更好地借助方法与策略的迁移,解决新问题。】
(五)总结提升,拓展替换策略
1.组织学生回顾用替换策略解决问题的一般思路,并举出生活中用替换法解决问题的实例。
2.展示教师收集的问题:
①啤酒促销,3个空瓶可以换1瓶啤酒。
②集齐若干个百事可乐瓶盖可以换明星海报、CD架、水壶、明星T恤衫和游戏卡等。
③肯德基20周年庆典,举办从电子杂志中找拼图换取电子优惠券活动。
【空瓶回收等实际生活中的例子能有效地沟通数学与生活的联系,拓展替换策略的内涵数量之间的倍数关系、相差关系可以用替换,具体的物品也可替换,让学生真正感受到替换策略在生活中的广泛应用。】
篇五:《解决问题的策略—假设》六年级数学教学反思 篇五
解决问题的策略(假设)是在学生学习了一些解决问题的策略和用列方程解决实际问题的基础上进行教学的。因为学生具有相当的基础知识和知识迁移的能力,教学中可以尽量放手,让孩子自己去尝试、去探索、去获取知识。
首先,我注意以学生的生活经验和已有知识为基准,把握好教学的起点,精心创设了两个复习题目,这两个复习题目是从例题改编过来的,为教学例题做了很好的铺垫,让学生养成寻找数量关系的习惯。充分调动起学生的学习积极性。
接着,出示例题,让学生比较例题与复习题的相同与不同之处,分析题意和找出数量关系,学生交流各自方法,尝试解决问题。学生会联系以前的知识解决这个问题,也会根据复习题的铺垫想出一种新的思路。简单复习一下以前学过的两种方法,着重讲解第三种策略。这样教学,旨在让学生复习旧知,体会解决问题的多种方法,且通过不同方法的比较,找出假设策略的本质。从而真正理解假设策略,掌握运用假设策略解决问题的方法。在教学“运用假设策略”的重难点时,让学生形成解题思路,学会怎样从假设出发思考问题,根据这样的思路列出算式,并体会检验的好处。这样学生不但体验到探索的乐趣和成功的喜悦,又有利于学生自主学习能力的培养。
练习内容回归生活, 桌子和椅子这一学生熟悉的事物,让学生运用所学知识去解决生活中的实际问题,深刻感受生活与数学的密切联系,学会用数学的眼光去看周围事物、想身边的事情。联系以前曾经使用假设策略的地方,拓展学生数学学习的领域。实践证明:结合生活,可以使学生深刻感受假设策略解决问题的应用价值,大大激发了学生学习数学的兴趣。
总之,整个过程体现“学生主体,教师主导”的互动模式,让学生通过自身的思考、体验、理解、吸收、内化等过程进行知识建构,让学生在体验中思考,在思考中理解,在理解中提升知识的应用能力。在实践中发展解决问题的能力。
本节课仍存在一些不足:
①对学生的解题过程应力求规范,比如个别列算式不规范,不能很好的体现思考过程,所以应加强学生的养成教育。
②评价语言和方式过于单一等。总之,我将不断反思总结教学实践中的经验和教训,使自己的教学水平更上一层楼!